DEFINICIÓN
Un número irracional es un número que no se puede escribir en forma de fracción - el decimal sigue para siempre sin repetirse. Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción.
Ejemplo: Pi es un número irracional. El valor de Pi es
3,1415926535897932384626433832795 (y más...)
Los decimales no siguen ningún patrón, y no se puede escribir ninguna fracción que tenga el valor Pi.
Números como 22/7 = 3,1428571428571... se acercan pero no son correctos.
Se llama irracional porque no se puede escribir en forma de razón (o fracción), ¡no porque esté loco! |
Racional o irracional
Pero si un número se puede escribir en forma de fracción se le llama número racional:
Ejemplo: 9,5 se puede escribir en forma de fracción así
19/2 = 9,5
así que no es irracional (es un número racional)
Aquí tienes más ejemplos:
Números | En fracción | ¿Racional o irracional? |
---|---|---|
5 | 5/1 | Racional |
1,75 | 7/4 | Racional |
.001 | 1/1000 | Racional |
√2 (raíz cuadrada de 2) | ? | ¡Irracional! |
Ejemplo: ¿La raíz cuadrada de 2 es un número irracional?
Mi calculadora dice que la raíz de 2 es 1,4142135623730950488016887242097, ¡pero eso no es todo! De hecho sigue indefinidamente, sin que los números se repitan.
No se puede escribir una fracción que sea igual a la raíz de 2.Así que la raíz de 2 es un número irracional
Números irracionales famosos
Pi es un número irracional famoso. Se han calculado más de un millón de cifras decimales y sigue sin repetirse. Los primeros son estos:
3,1415926535897932384626433832795 (y sigue...)
| |||||
El número e (el número de Euler) es otro número irracional famoso. Se han calculado muchas cifras decimales de e sin encontrar ningún patrón. Los primeros decimales son:
2,7182818284590452353602874713527 (y sigue...)
| |||||
El número áureo(razón de oro), , utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.La es un número irracional. Sus primeros dígitos son:
1,61803398874989484820... (y más...)
| |||||
Muchas raíces cuadradas, cúbicas, etc. también son irracionales. Ejemplos:
Pero √4 = 2, y √9 = 3, así que no todas las raíces son irracionales. |
Historia de los números irracionales
Aparentemente Hipaso (un estudiante de Pitágoras) descubrió los números irracionales intentando escribir la raíz de 2 en forma de fracción (se cree que usando geometría). Pero en su lugar demostró que no se puede escribir como fracción, así que es irracional.
Pero Pitágoras no podía aceptar que existieran números irracionales, porque creía que todos los números tienen valores perfectos. Como no pudo demostrar que los "números irracionales" de Hipaso no existían, ¡tiraron a Hipaso por la borda y se ahogó!
Pero Pitágoras no podía aceptar que existieran números irracionales, porque creía que todos los números tienen valores perfectos. Como no pudo demostrar que los "números irracionales" de Hipaso no existían, ¡tiraron a Hipaso por la borda y se ahogó!
No hay comentarios:
Publicar un comentario